## **Supporting Information**

## For

## Fluorescence Sensing of Ammonium and Organoammonium ions Using Tripodal Oxazoline Receptors

Kyo Han Ahn,\* Hui-young Ku, Yusin Kim, Sung-Gon Kim, Young Kook Kim, Hyung Su Son and Ja Kang Ku\*

Department of Chemistry and Center for Integrated Molecular Systems, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang 790-784, Republic of Korea

†To whom correspondence should be made:

Professor Kyo Han Ahn Tel: +82) 54-279-2105 Fax: +82) 54-279-3399

Email: ahn@postech.ac.kr

**Figure S1.** UV absorption spectrum of oxazoline **1a**, 1.0 mM in acetonitrile.

Figure S2. UV absorption spectrum of oxazoline 1c, 0.2 mM in acetonitrile.

**Figure S3.** Fluorescence emission changes of tripodal oxazoline **1c** (0.05 mM) upon addition of NH<sub>4</sub><sup>+</sup> (as ClO<sub>4</sub><sup>-</sup> salt; from the top: 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 equiv. with respect to **1b**) in the presence of an excess amount (10 molar equiv.) of K<sup>+</sup>ClO<sub>4</sub><sup>-</sup> in acetonitrile following at 282-nm excitation.

**Figure S4.** Changes of UV absorption spectra of **1a** upon addition of NH<sub>4</sub><sup>+</sup> (as ClO<sub>4</sub><sup>-</sup> salt) in acetonitrile at 25 °C.

**Figure S5.** Fluorescence emission changes of tripodal oxazoline **1a** (1.0 mM) upon addition of NH<sub>4</sub><sup>+</sup> (as  $ClO_4$  salt) in the presence of an excess amount (10 molar equiv) of K<sup>+</sup> $ClO_4$  in acetonitrile following at 272-nm excitation.

**Figure S6.** Fluorescence emission changes of tripodal oxazoline **1b** (1.0 mM) upon addition of NH<sub>4</sub><sup>+</sup> (as ClO<sub>4</sub><sup>-</sup> salt)

**Figure S7.** Fluorescence emission changes of tripodal oxazoline **1b** (1.0 mM) upon addition of PhCH<sub>2</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup> (as ClO<sub>4</sub><sup>-</sup> salt)

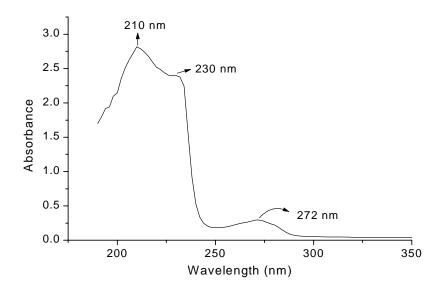
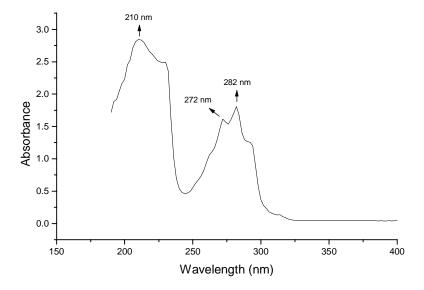
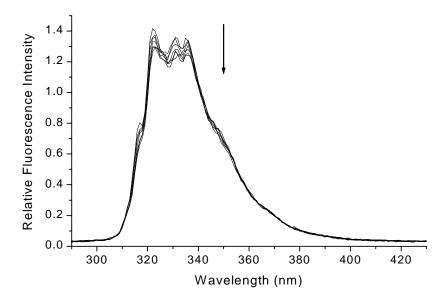
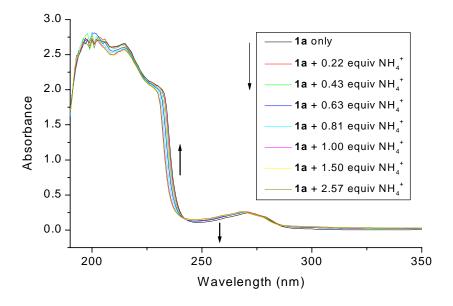
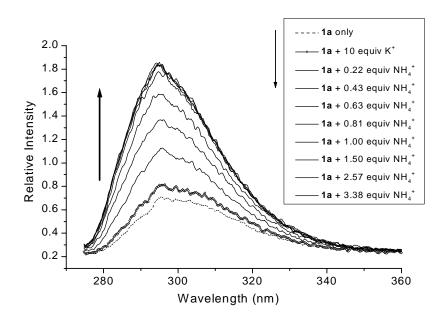
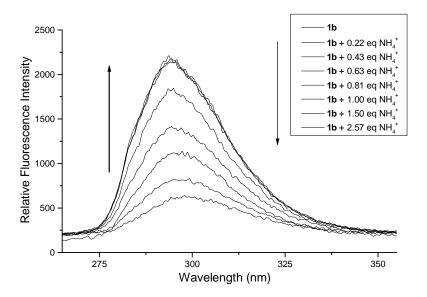



Figure S1. UV absorption spectrum of oxazoline 1a, 1.0 mM in acetonitrile.

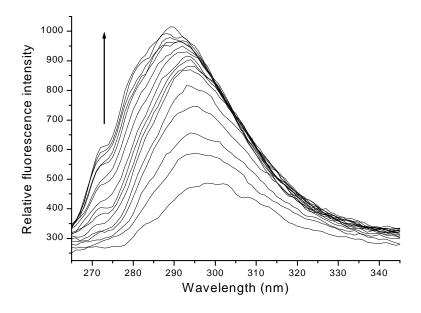




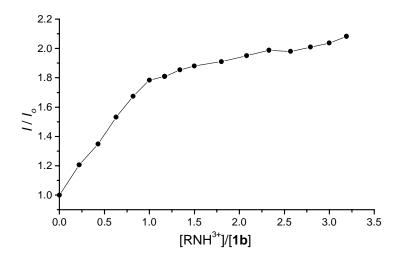


Figure S2. UV absorption spectrum of oxazoline 1c, 0.2 mM in acetonitrile.




**Figure S3.** Fluorescence emission changes of tripodal oxazoline **1c** (0.05 mM) upon addition of  $NH_4^+$  (as  $ClO_4^-$  salt; from the top: 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 equiv. with respect to **1c**) in the presence of an excess amount (10 molar equiv.) of  $K^+ClO_4^-$  in acetonirile following at 282-nm excitation. Very small decrease in the intensity was observed.




**Figure S4.** Changes of UV absorption spectra of **1a** upon addition of  $NH_4^+$  (as  $ClO_4^-$  salt) in acetonitrile at 25 °C.




**Figure S5.** Fluorescence emission changes of tripodal oxazoline **1a** (1.0 mM) upon addition of  $NH_4^+$  (as  $ClO_4^-$  salt) in the presence of an excess amount (10 molar equiv) of  $K^+ClO_4^-$  in acetonitrile following at 272-nm excitation.



**Figure S6.** Fluorescence emission changes of tripodal oxazoline **1b** (1.0 mM) upon addition of  $NH_4^+$  (as  $ClO_4^-$  salt) in acetonitrile following at 272-nm excitation.





**Figure S7.** Fluorescence emission changes of tripodal oxazoline **1b** (1.0 mM) upon addition of PhCH<sub>2</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup> (as ClO<sub>4</sub><sup>-</sup> salt) in acetonitrile following at 272-nm excitation. The lower plot shows the relative fluorescence intensity depending on the molar ratio, [PhCH<sub>2</sub>CH<sub>2</sub>NH<sub>3</sub><sup>+</sup>]/[**1b**].